Veer Narmad South Gujarat University Biotechnology Course: CBCS

NEW (Effective from June 2015)

Semester	Semester V & VI (24+24 Credits)						
Subject	Theory			Laboratory Work			Total Credits
	Course	Credit	hours	Course	Credit	Hours	
Foundation Compulsory	1	2	3	-	-	-	2
Generic Elective	1	2	3	-	-	-	2
Core 1	6	12	12	1	6	12	18
Foundation Elective	1	2	2	-	-	-	2
Total	9	18	20	1	6	12	24+24

Semester-V

Core 1: Biotechnology

Course 1: BT 11: Introduction to Computers & Bioinformatics

Course 2: BT 12: Introduction to Virology

Course 3: BT 13: Introduction to Nanobiotechnology

Course 4: BT 14: Fundamentals of Mycology

Course 5: BT 15: Genetic Engineering Course 6: BT 16: Bioethics & Biosafety

Practical Core 1: BTP 05: Biotechnology Semester-V

Semester-VI

Core 1: Biotechnology

Course 1: BT 17: Pharmaceutical Biotechnology

Course 2: BT 18: Immunotechnology

Course 3: BT 19: Microbial Biotechnology

Course 4: BT 20: Environmental Biotechnology

Course 5: BT 21: Plant Biotechnology Course 6: BT 22: Animal Biotechnology

Practical Core 1: BTP 06: Biotechnology Semester-VI

M. Sc. Integrated Biotechnology Syllabus: Semester-V

CORE: 1; Course: 01 BT-11: INTRODUCTION TO COMPUTER & BIOINFORMATICS

UNIT 1: INTRODUCTION OF COMPUTERS

- **1.1** Evolution of computers and characteristics of computers
- 1.2 Parts of Computer System
 - 1.2.1 Hardware
 - 1.2.2 Software
 - 1.2.3 Data and User
- **1.3** Essential Computer Hardware
 - 1.3.1 Processing device
 - 1.3.2 Memory device- RAM & ROM
 - 1.3.3 Input and Output devices
 - 1.3.4 Storage device- Optical & Magnetic
- **1.4** Essential Computer Software
 - 1.3.1 System software
 - 1.3.2 Application software
- 1.5 Computer Data

UNIT 2: DATABASE MANAGEMENT SYSTEM

- **2.1** Database system applications.
- **2.2** Purpose of Database system.
- **2.3** View of Data- Data abstraction, Instance and schema, Data model.
- 2.4 Database language- DDL, DML.
- **2.5** Database Architecture- Two tier Architecture, Three tier Architecture.

UNIT 3: INTRODUCTION TO BIOINFORMATICS

- **3.1** A word on Bioinformatics.
 - 3 1 1 Branches of Bioinformatics
 - 3.1.2 Aims of Bioinformatics.
 - 3.1.3 Scope and Research area of Bioinformatics.
- 3.2 Organization of Bioinformatics in India
 - 3.2.1 BTIS
 - 3.2.2 Bioinformatics Server in India
 - 3.2.2.1 Protein structure prediction server.
 - 3.2.2.2 Genomics and Proteomics server.
 - 3.2.2.3 Conformational epitope prediction server.

UNIT 4: BIOLOGICAL DATABASE

- **4.1** Biological Database
 - 4.1.1 Primary Database- Nucleotide sequence, Protein sequence.
 - 4.1.2 Secondary Database- Nucleotide sequence-TIGR, Protein sequence-PROSITE.
 - 4.1.3 Structure Database- PDB, SCOPE, CATH.
 - 4.1.4 Metabolic Pathway Database KEGG, BioCyc.
 - 4.1.5 Database retrieval tool SRS, Entrez.
 - 4.1.6 Literature Database PubMed.

- 1. Sinha and Sinha, Computer Fundamental 4th Edition.
- Introduction of Computer by Perter Norton, 6th Edition.
 Database system concept, 5th Edition, Silberscath Korth.
- 4. Bioinformatics Principle and Application, Gosh and Mallick.
- 5. Introduction to Bioinformatics, T. K. Attwood, D. J. Parry- Smith, Samiron Pukhan.
- 6. Bioinformatics Database, Tools and Algorithms by Orpita Bosu.

M. Sc. Integrated Biotechnology Syllabus: Semester-V

CORE: 1; Course: 02 BT-12: INTRODUCTION TO VIROLOGY

UNIT 1: INTRODUCTION

- **1.1** What are Viruses?
- **1.2** History: Understanding Viruses.
- **1.3** Components of Viruses
- **1.4** Classification:
 - 1.4.1 RNA Virus
 - 1.4.2 DNA Virus
- **1.5** Properties of Viruses.

UNIT 2: VIRAL REPLICATION

- **2.1** General characteristics.
- **2.2** Bacteriophage replication.
- 2.3 Replication of animal virus.

UNIT 3: CULTIVATION TECHNIQUES

- **3.1** Culturing viruses in laboratory.
- **3.2** Isolation of viruses.
- **3.3** Structural investigation of cells and virions.
- **3.4** Electrophoretic techniques.
- **3.5** Detection of viruses and virus components.
- **3.6** Infectivity assays.

UNIT 4: INTRODUCTION, CLINICAL FEATURES AND TREATMENT OF:

- 4.1 Poliomyelitis
- **4.2** HIV and AIDS
- 4.3 Hepatitis B
- 4.4 Human Papilloma Virus
- **4.5** Herpes Simplex
- **4.6** SIV & HPAI

- 1. Understanding Viruses: Teri shors, Jones and Bartlett publication.
- 2. Microbiology with disease by Body System: Robert W. Bauman, Benjamin Cummings Publication
- 3. Virology-Principle and Application by John Carter, Willey publication
- 4. Microbiology- Principles and explorations: Jacquelyn Black, John Wiley and Sons Publication.

M. Sc. Integrated Biotechnology Syllabus: Semester-V

CORE: 1; Course: 03 BT-13: INTRODUCTION TO NANOBIOTECHNOLOGY

UNIT 1: INTRODUCTION TO NANOTECHNOLOGY & NANOBIOTECHNOLOGY

- **1.1** Introduction to Nano-world.
- **1.2** Types and properties of nanomaterials
- **1.3** Introduction to nanobiotechnology.
- **1.4** Dominion of biological machines.

UNIT 2: SYNTHESIS OF NANOMATERIALS

- **2.1** Approaches for synthesis of nanoparticles.
- **2.2** Techniques for synthesis of nanostructures.
- **2.3** Self-assembly techniques.
- **2.4** Introduction to biosynthesis.
- **2.5** What is biosynthesis? Why biosynthesis?

UNIT 3: MOLECULAR NANOTECHNOLOGY

- **3.1** Mastering the complex DNA nanostructure.
- 3.2 DNA tweezers.
- **3.3** DNA actuators.
- 3.4 DNA scissors.
- **3.5** Self-assembly of protein nanoarchitecture.
- **3.6** Applications of protein nanostructures.

UNIT 4: APPLICATIONS OF NANOBIOTECHNOLOGY

- **4.1** Application of carbon nanotubes in:
 - 4.1.1 Diagnostic equipment
 - 4.1.2 Surgical supplements
 - 4.1.3 Tissue engineering
 - 4.1.4 Gene delivery
 - 4.1.5 Anticarcinogenic activity
 - 4.1.6 Drug delivery
 - 4.1.7 Neurodegenerative disorder therapy
- **4.2** Use of liposomes.
- **4.3** Photocatalysis of pollutants.
- **4.4** Application in food and agriculture.

REFERENCES:

- 1. Sharon Madhuri et al., 2012, Bio-nanotechnology, Ane Books Pvt. Ltd.
- 2. Kulkarni S. K., 2007, Nanotechnology: Principles & Practices, Capital Publishing Co.

----X-----X----

M. Sc. Integrated Biotechnology Syllabus: Semester-V

CORE: 1; Course: 04 BT-14: FUNDAMENTALS OF MYCOLOGY

Text

UNIT 1: INTRODUCTION

- **1.1** Place of fungi in 'tree of life'.
- **1.2** Characteristics of fungi.
- **1.3** Morphology of yeasts and filamentous fungi.
- 1.4 Classification of fungi.
- **1.5** Life cycle of the yeast *Saccharomyces*.
- **1.6** Life cycle of filamentous Ascomycete.

UNIT 2: FUNGAL PHYSIOLOGY & DIFFERENTIATION

- **2.1** Chemical requirements for growth.
- 2.2 Fungal cultivation media.
- **2.3** Physical Requirements for growth.
- **2.4** Cellular reproduction.
- 2.5 Mould-yeast dimorphism.
- **2.6** Sclerotia.
- **2.7** Nutrient –translocating organs.

UNIT 3: CONTROL OF FUNGAL GROWTH

- **3.1** Management of environmental and biological factors.
- 3.2 Biological and chemical control.
- **3.3** Cellular targets of antifungal agents.
- **3.4** Fungicides for plant disease control.
- **3.5** Control of fungal infections of humans.

UNIT 4: APPLIED MYCOLOGY

- **4.1** Fungal parasites and symbionts of plants.
- **4.2** Fungal pathogens of humans.
- **4.3** Fungal parasites as biological control.
- **4.4** Fungal saprotrophs.
- **4.5** Fungi in Biotechnology.
- **4.6** Case study: Hepatitis B vaccine.

- 1. Deacon, J. (2007). Fungal Biology. 4th Ed., Blackwell Publishing.
- 2. Kavanagh, K. Ed. (2006). Fungi: Biology and Applications. Wiley.
- 3. Wiley, J., & Sherwood, L. (2011). *Prescott's Microbiology*, 8th Ed., McGraw-Hill Science/Engineering/Math.

M. Sc. Integrated Biotechnology Syllabus: Semester-V

CORE: 1; Course: 05 BT-15: GENETIC ENGINEERING

UNIT 1: RECOMBINANT DNA TECHNOLOGY AND ENZYMES

- **1.1** Recombinant DNA Technology.
- **1.2** How to clone a gene?
- **1.3** Restriction Endonucleases.
- **1.4** Ligases.
- **1.5** Enzymes used to modify ends of DNA.
- **1.6** Use of Linkers, Adapters and Connectors.

UNIT 2: VECTORS

- **2.1** Vectors in Vogue.
- **2.2** Vectors in Plasmid.
- **2.3** Vectors from Bacteriophages: Charon phages and Replacement vectors.
- **2.4** Cosmids.
- 2.5 Vectors from Simian Virus 40.
- **2.6** Artificial Minichromosomes.
- **2.7** Vectors from Yeasts.
- **2.8** Vectors from Ti Plasmids.

UNIT 3: TECHNIQUES USED IN GENETIC ENGINEERING

- **3.1** Introducing genes into Prokaryotes: Cell Transformation with plasmids and Phage Transfection.
- **3.2** Introducing genes into Eukaryotes.
- **3.3** Insertion inactivation of Marker genes.
- **3.4** Colony hybridization.
- **3.5** Cells for Cloning: *B. subtilis*, *S. cerevisiae* and CHO cultured cells.

UNIT 4: APPLICATIONS OF GENETIC ENGINEERING

- **4.1** DNA sequencing by Sanger and Coulson's Method.
- 4.2 Messing's Shot-gun Method.
- **4.3** Oligonucleotide Directed Mutagenesis.
- **4.4** Applications of gene cloning techniques in Agriculture.
- 4.5 Vaccines.
- **4.6** Gene Replacement Therapy.

REFERENCE:

1. Mitra, S. (2007). Genetic Engineering: Principles and Practice, MacMillan India Ltd., New Delhi

v	V	~	
A	 Λ	\ - -	

M. Sc. Integrated Biotechnology Syllabus: Semester-V

CORE: 1; Course: 06 BT-16: BIOETHICS & BIOSAFETY

UNIT 1: BIOETHICS

- **1.1** Introduction and need of Bioethics.
- **1.2** Definitions & Applications.
- **1.3** Relationship with other Sciences.

UNIT 2: INTRODUCTION TO ETHICAL, LEGAL AND SOCIAL IMPLICATIONS

- **2.1** Human Genome Project.
- 2.2 GMO: Foods & Crop.
- 2.3 Stem Cell Research.
- **2.4** Drug testing on Human volunteers.
- **2.5** Organ transplantation.

UNIT 3: BIOSAFETY

- **3.1** Introduction and need of Biosafety.
- **3.2** Overview of Histroy.
- **3.3** Definitions & Applications.

UNIT 4: BIOSAFTY GUIDELINES & REGULATIONS

- **4.1** Aims of NIH guidelines.
- **4.2** Risk assessment:
 - 4.2.1 Assessment of risk during laboratory research.
 - 4.2.2 Risk assessment for planned introduction.
 - 4.2.3. Risk assessment of biotechnology products.
- **4.3** Containment: Physical and Biological
- **4.4** Biosafety guidelines in India.
- 4.5 Biosafety Protocol [UN Cartagena Biosafety Protocol (CBP).

- 1. Bioethics and Biosafety, M.K.Sateesh, I.K.International 2008
- 2. Bioethics, S. Ignacimuthu, S. J. Narosa Publishing House Pvt. Ltd.
- 3. Biotechnology, B. D. Singh (2009), Kalyani Publishers, New Delhi.

M. Sc. Integrated Biotechnology Semester-V

Practical Core-1: BTP-05: Biotechnology

- 1. Introduction to HTML and literature access through Internet.
- 2. Nucleotide Sequence retrieval from GenBank.
- 3. Protein Sequence retrieval form Swiss port.
- 4. Protein Structure retrieval from PDB.
- 5. Protein structure visualization by RasMol.
- 6. Metabolic pathway database-KEGG.
- 7. Isolation and titration of Bacteriophage.
- 8. Demonstration of virus infection in chick embryo.
- 9. Detection of HIV by ELISA.
- 10. Detection of Hepatitis B surface antigen by direct ELISA.
- 11. Synthesis of AgNPs by using sodium citrate.
- 12. *In vitro* study of antimicrobial activity of AgNPs against bacteria.
- 13. Isolation and identification of Moulds and Yeast.
- 14. Isolation of plant pathogenic fungi.
- 15. Isolation of plasmid DNA from E. coli.
- 16. Extraction and Purification of bacterial DNA using spin column.
- 17. Restriction digestion of plasmid vector.
- 18. Transformation of bacterial cells by CaCl₂ method.

M. Sc. Integrated Biotechnology Syllabus: Semester-VI

CORE: 1; Course: 01 BT-17: PHARMACEUTICAL BIOTECHNOLOGY

UNIT 1: PHARMACEUTICALS, BIOLOGICS & BIOPHARMACEUTICALS

- **1.1** Introduction to pharmaceutical products.
- **1.2** Biopharmaceuticals and pharmaceutical biotechnology.
- **1.3** History of the pharmaceutical industry.
- **1.4** The age of biopharmaceuticals.
- **1.5** Biopharmaceuticals: Current status and future prospects.

UNIT 2: DRUG DELIVERY & THERAPEUTICS

- **2.1** Drug delivery
 - 2.1.1 Liposome.
 - 2.1.2 Nasal spray.
 - 2.1.3 Biodegradable polymer.
 - 2.1.4 Osmotic.
- **2.2** RNA i Therapeutics.
- **2.3** Antisense Technology.
- **2.4** Enzyme of Therapeutic value- Superoxide dismutase, DNAse.
- **2.5** Hormone as therapy- Insulin.

UNIT 3: DRUG DISCOVERY & DEVELOPMENT

- **3.1** Drug discovery and development.
- **3.2** Clinical pharmacology.
- **3.3** Pharmakokinetics and Pharmacodynamics.
- **3.4** Toxicology studies- Reproductive toxicity, Teratogenicity, Carcinogenicity.

UNIT 4: REGULATORY AFFAIRS

- **4.1** Food & Drug Administration.
- **4.2** The investigational new drug application.
- **4.3** The new drug development.
- **4.4** Regulatory procedure.
- **4.5** Role of regulatory affairs department.

- 1. Gray Walsh, Pharmaceutical Biotechnology: Concepts and Applications. John Wiley & Sons, ISBN: 978-0-470-01245-1.
- 2. Humphrey P. Rang, Drug Discovery and Development: Technology in Transition (New title) Churchil Livigstone, ISBN: 978-0-443-06420-3.
- 3. Rodney J. Y. Milo Gibaldi, Biotechnology and Biopharmaceuticals: Transforming Proteins and Genes into Drugs, John Whiley & Sons, ISBN: 0471450278.
- 4. S. N. Jogdand, Medical Biotechnology, Himalaya Publishing House.
- 5. R. C. Sobti, Suparna S. Pachauri, Essentials of Biotechnlogy, Ane Books Pvt. Ltd. ISBN: 9788180521607.

M. Sc. Integrated Biotechnology Syllabus: Semester-VI

CORE: 1; Course: 02 BT-18: IMMUNOTECHNOLOGY

UNIT 1: MONOCLONAL ANTIBODIES

- **1.1** Hybridoma Technology.
- **1.2** Myeloma tumours.
- **1.3** Procedure for generation of hybridomas.
- **1.4** Human monoclonal antibodies.
- **1.5** Application of monoclonal antibodies.
- **1.6** Monoclonal antibodies as Abzymes.

UNIT 2: TECHNIQUES USED IN DIAGNOSIS

- 2.1 Precipitation.
- **2.2** Agglutination.
 - 2.2.1 Haemaglutination.
 - 2.2.2 Bacterial agglutination.
 - 2.2.3 Passive agglutination.
 - 2.2.4 Agglutination inhibition.
- **2.3** ELISA
- **2.4** Radioimmunoassay.
- **2.5** Immunofluorescence.
- **2.6** Immunochromatography.

UNIT 3: HYPERSENSITIVITY & IMMUNE DISEASE

- **3.1** Hypersensitivity Type I, II, III & IV
- **3.2** Diagnosis of hypersensitivity.
- **3.3** Autoimmune diseases- Insulin Dependent Diabetes Mellitus.
- **3.4** Immunodeficiency-Severe Combined Immunodeficiency.

UNIT 4: VACCINES

- **4.1** Attenuated and killed vaccines.
- **4.2** Sub unit vaccine (Toxoids, Capsule polysaccharides, Glycoproteins).
- **4.3** Multivalent subunit vaccine.
- 4.4 DNA vaccine.
- **4.5** Recombinant vector vaccine.

- 1 Kuby Immunology –Janis Kuby, Kindst, Gatsby And Osborne, Sixth Edition, W.H. Freeman Publications.
- 2 Immunology And Immunotechnology- Ashim Chakravarty,Oxford University Press, ISBN-13: 978-0-19-567688-4
- 3 Microbiology- Lansing Prescott, John P. Harley, Donald A. Klein, Eighth Edition, Mcgraw Hill Publication.
- 4 Principles and Techniques of Biochemistry and Molecular Biology, Keith Wilson and John Walker, Seventh Edition, Cambridge University Press.

M. Sc. Integrated Biotechnology Syllabus: Semester-VI

CORE: 1; Course: 03 BT-19: MICROBIAL BIOTECHNOLOGY

UNIT 1: INTRODUCTION TO MICROBIAL FERMENTATION

- **1.1** Concept of fermentation technology.
- **1.2** Chronological development of industrial fermentation technology.
- **1.3** Range of fermentation processes and products.
- **1.4** Fermentation process outline.
- **1.5** Fermentative production of Citric acid & Penicillin (Outline).

UNIT 2: MICROBIAL SCREENING AND PRESERVATION

- **3.1** Concept of microbial screening.
- **3.2** Primary and Secondary screening.
- **2.3** Isolation of industrially important microorganisms:
 - 2.2.1 Methods utilizing selection of desired characteristics.
 - 2.2.2 Methods not utilizing selection of desired characteristics.
- **2.4** Future potential and needs of microbial screening.
- **2.5** Maintenance and Preservation of Microbial cultures.

UNIT 3: IMPROVEMENT OF MICROORGANISMS

- **3.1** Types of Microbial mutants and their practical implications.
- **3.2** Isolation of microbial mutants (Outline).
- **3.3** Selection of mutants producing high yield of primary & secondary metabolites.
- **3.4** Parasexual cycle.
- **3.5** Protoplast fusion.

UNIT 4: FERMENTOR DESIGN

- **4.1** Basic functions of fermentor.
- **4.2** Aseptic operation and Containment.
- **4.3** Factors involved in fermentor design.
- **4.4** Typical batch fermentor
- 4.5 Air-lift bioreactor and CSTF

REFERENCES:

- 1. *Principles of fermentation technology*, 2nd edition, Whitaker, Butterworth-Heinemann, ISBN: 978-81-8147-808-5.
- 2. *Text book of Industrial Microbiology*, 2nd edition, Wulf Crueger and Anneliese Crueger, Panima Publishing Corporation, ISBN: 81-86535-27-6.
- 3. Industrial Microbiology by A. H. Patel, Macmillan India Ltd. ISBN: 0333-90842-2.
- 4. Microbial Biotechnology, H.A. Modi, Pointer Pub., Jaipur. ISBN: 978-81-7132-591-7.

----X-----X-----

M. Sc. Integrated Biotechnology Syllabus: Semester-VI

CORE: 1; Course: 04 BT-20: ENVIRONMENTAL BIOTECHNOLOGY

UNIT 1: BIOENERGY

- **1.1** Energy resources.
- **1.2** Biogas technology.
- **1.3** Bioethanol production from cellulosic waste.
- **1.4** Microbial Hydrogen production.
- **1.5** Biodiesel from Jatropha.

UNIT 2: BIOREMEDIATION

- **2.1** Principles of bioremediation.
- **2.2** Factors responsible for bioremediation.
- **2.3** Bioremediation strategies: *In situ & Ex situ*.
- 2.5 Metal & Organic Phytoremediation.

UNIT 3: WASTE MANAGEMENT

- **3.1** Characteristics of waste water.
- **3.2** Aerobic biological processes of waste water treatment: Activated sludge and Oxidation ponds.
- **3.3** Anaerobic biological processes of waste water treatment: UASB and Anaerobic baffled reactor.
- **3.4** Conventional solid waste treatment technologies.
- 3.5 Municipal waste management rules.
- **3.6** Composting: Design aspects and process.
- 3.7 Vermicomposting.

UNIT 4: SOME SPECIAL PROCESSES

- **4.1** Abatement of Air pollution.
- **4.2** Bioleaching: Types and Methods.
- **4.3** Metal Precipitation.
- **4.4** Biopolymers: Types and Preparation.
- **4.5** Properties and Practical applications of PHA.

- 1. Fulekar, M. H. (2007) Environmental Biotechnology, CRC Press.
- 2. Thakur, I. S. (2011) Environmental Biotechnology, I. K. International Pub. House Pvt. Ltd.
- 3. Maier, R. M. (2009) Environmental Microbiology, Academic Press.

M. Sc. Integrated Biotechnology Syllabus: Semester-VI

CORE: 1; Course: 05 BT-21: PLANT BIOTECHNOLOGY

UNIT 1:

- **1.1** Introduction and History of Plant tissue culture.
- **1.2** Laboratory Requirement and General Techniques.
- **1.3** Tissue culture Media (Murashiage and Skoog, Gamborg, Rosinni) Preparation, role of different media constituents and natural extracts.
- **1.4** Cellular Differentiation and Totipotency.

UNIT 2:

- **2.1** Micropropagation- Introduction, advantages and limitations.
- **2.2** Micropropagation (direct organogenesis).
- **2.3** Micropropagation (indirect organogenesis).

UNIT 3:

- **3.1** *In vitro* Embryogenesis: Somatic and Zygotic embryo culture conditions and practical applications.
- **3.2** Synthetic seeds Classification, Encapsulation, Advantages limitations and Applications.
- **3.3** Cryopreservation and Germplasm conservation.

UNIT 4:

- **4.1** Haploid Production- Anther, Pollen, Ovary and Ovule Culture.
- **4.2** Factors affecting androgenesis and gynogenesis, Applications and Limitations.
- **4.3** Protoplast isolation and Culture- Methods of Isolation, Factors affecting Isolation, Purification and steps involved in culture.
- **4.4** Single cell culture.

- 1. Introduction to Plant Biotechnology. 2nd edition. By H.S.Chawla. Oxford & IBH publishing Co. Pvt. Ltd. New Delhi.
- 2. Plant Tissue culture: Theory and Practice, a revised Edition, S.S. Bhojwani and M.K. Razdan, Elsevier.
- 3. Plant Tissue Culture basic and Applied by Timir Baran Jha & Biswajit Ghosh. Universities Press Pvt. Ltd.,Hyderabad.
- 4. Medicinal Plant Biotechnology by Ciddi Veerasham. CBS Publishers.
- 5. An Introduction to Plant Tissue Culture. 2nd Edition, by M.K.Razdan. Oxford & IBH Publishing Co.Pvt. Ltd.

M. Sc. Integrated Biotechnology Syllabus: Semester-VI

CORE: 1; Course: 06 BT-22: ANIMAL BIOTECHNOLOGY

UNIT 1: INTRODUCTION TO ANIMAL BIOTECHNOLOGY

- **1.1** Introduction: Historical background.
- **1.2** Application of animal biotechnology.
- **1.3** Advantages and limitation of animal tissue culture.
- **1.4** Types of tissue culture Adherent culture, Suspension culture, Short term culture and Long term culture.

UNIT 2: BIOLOGY OF CULTURED CELLS

- **2.1** Culture environment.
- **2.2** Cell adhesion.
- **2.3** Cell proliferation.
- **2.4** Differentiation.

UNIT 3: LABORATORY DESIGN, EQUIPMENTS AND CELL CULTURE

- **3.1** Instruments and laboratory designing.
- **3.2** Primary culture.
- **3.3** Subculture and cell lines.
- **3.4** Cell viability and cryopreservation of cell lines.

UNIT 4: ASEPTIC TECHNIQUES AND ANIMAL CELL CULTURE MEDIA

- **4.1** Aseptic environment.
- **4.2** Sterile handling.
- **4.3** Defined media Physical properties of media, complete media and serum free media.
- **4.4** Sterilization of media.

- 1. Ian Freshney, Culture of Animal Cells (Fifth Edition), Wiley-Leiss.
- 2. Jannie P. Mather and Peneolpe E. Roberts, Introduction to Cell and Tissue Culture, Plenum Press.
- 3. A. Doyle and B. Griffith, Cell and Tissue Culture: Laboratory Procedures in Biotechnology, Wiley publications.
- 4. D. C. Darling and S. J. Morgan (1994) Animal call culture and media, Bios Scientific Publishers Limited.
- 5. C. D. Helgason and C. L. Miller, Basic Cell Culture Protocols, Humana press.
- 6. Basant Kumar Sinha and Rinesh Kumar, Principles of Animal Cell Culture, International Book Distribution Co.
- 7. B.D. Singh, Expanding Horizons of Biotechnology, Kalyani Publishers.

M. Sc. Integrated Biotechnology Semester-VI

Practical Core-1: BTP-06: Biotechnology

- 1. In-house sterility testing for autoclaves.
- 2. To determine MIC of commercially available antibiotics.
- 3. To study ADMET profile using toxicology database-ACToR.
- 4. Immuno-chromatography for diagnosis of Malaria/Typhoid.
- 5. RPR for diagnosis of Syphilis.
- 6. Isolation and screening of antibiotic producing microorganisms:
 - (a) Crowded Plate Technique.
 - (b) Wilkin's Technique.
- 7. Isolation and screening of organic acid producing microorganisms.
- 8. Isolation and screening of Extracellular enzyme producing microorganisms:
 - (a) Amylase producer.
 - (b) Protease producer.
 - (c) Cellulase producer.
 - (d) Lipase producer.
- 9. Production of citric acid by Aspergillus niger.
- 10. Determination of TDS and TSS of given waste water.
- 11. Determination of BOD of given waste water.
- 12. Study of heavy metal biosorption using fungal biomass.
- 13. Isolation of mesophyll cell by different methods.
- 14. Media preparation (Murashiage and Skoog, Gamborg B5) and explants inoculation.
- 15. Callus culture from different explants (node, internode and leaf).
- 16. Preparation and sterilization of Media by appropriate; autoclave and filtration techniques.
- 17. To perform cell culture from Splenocyte / Hepatocyte / Chick fibroblast.
- 18. To perform suspension culture (PBLC) and prepare metaphase plate.

