

Re-Accredited by NAAC with 'A' Grade'
VEER NARMAD SOUTH GUJARAT UNIVERSITY

University Campus, Udhna-Magdalla Road, SURAT - 395 007, Cujarat, India.

વીર નર્મદ દક્ષિણ ગુજરાત યુનિવર્સિટી

युनिवर्सिटी डेम्पस, ઉधना-भगद्दला शेऽ, सुरेत - उ७५ ००७, गुक्ररात, भारत

Tel: +91 - 261 - 2227141 to 2227146, Tell Free: 1800 2333 011, Fax +91 - 261 - 2227312 E-mail: info@vnsgu.ac.in, Website: www.ynsgu.ac.in

-: परिपत्र :-

વિજ્ઞાન વિદ્યાશાખા હેઠળની સંલગ્ન સ્નાતક કોલેજોના આચાર્યશ્રીઓને જણાવવાનું કે, પેટાસમિતિએ તૈયાર કરેલ એમ.એસસી.માઈક્રોબાયોલોજી (સેમેસ્ટર-૧,૨,૩,૪,) નાં પુનઃગઠિત અભ્યાસકમ અંગે માઈક્રોબાયોલોજી વિષયની અભ્યાસસમિતિએ તેની તા. ૦૪/૦૫/૨૦૧૭ ની સભાના ઠરાવ કમાંક : ૨ અન્વયે કરેલી નીચેની ભલામણ વિજ્ઞાન વિદ્યાશાખાએ તેની તા.૧૨/૦૭/૨૦૧૭ ની સભાના ઠરાવ કમાંક : ૧૧ અન્વયે સ્વીકારી તે મંજૂર કરવા એકેડેમિક કાઉન્સિલને કરેલ ભલામણ માનનીય કુલપતિશ્રીએ એકેડેમિક કાઉન્સિલવતી મંજૂર કરેલ છે. તેની જાણ સંબંધકર્તા શિક્ષકો અને વિદ્યાર્થીઓને કરવી, તદ્ઉપરાંત તેનો અમલ કરવો.

માઈક્રોબાયોલોજી વિષયની અભ્યાસસમિતિની તા. 0૪/૦૫/૨૦૧૭ ની સભાની ભલામણ ક્રમાંક: ૨

આથી ઠરાવવામાં આવે છે કે, પેટાસમિતિએ તૈયાર કરેલ શૈક્ષણિક વર્ષ ૨૦૧૭–૧૮ થી અમલમાં આવનાર એમ.એસસી. માઈક્રોબાયોલોજી (સેમેસ્ટર–૧,૨,૩,૪,)ના પેપરો પર ચર્ચા વિચાર**ણા કરી તેને સર્વસંમતિથી પાસ કરી** તે મંજૂર કરવા વિજ્ઞાન વિદ્યાશાખાને ભલામણ કરવામાં આવે છે.

વિજ્ઞાન વિદ્યાશાખાની તા. ૧૨/૦૭/૨૦૧૭ ની સભાની ભલામણ ક્રમાંક : ૧૧

આથી ઠરાવવામાં આવે છે કે, એમ.એસસી. માઈક્રોબાયોલોજી (સેમેસ્ટર-૧,૨,૩,૪,)ના પેપરો ક્રમશઃ એટલે કે સેમે.૧ અને ૨ જુન ૨૦૧૭ થી અને સેમે.૩ અને ૪ જુન ૨૦૧૮ થી અમલમાં આવે તે રીતે મંજુર કરવા એકેડેમિક કાઉન્સિલને ભલામણ કરવામાં આવે છે.

બિડાણઃ ઉપર મજબ

Shree Ramkrishna Institute of Computer Education & Applied Sciences Inward No. &34 Date & | 117

ક્રમાંક : એકે./પરિપત્ર/૧૩૪૧૦/૧૭

તા. ૧૭–૦૭–૨૦૧૭

प्रति,

૧) વિજ્ઞાન વિદ્યાશાખા હેઠળની તમામ સ્નાતક કોલેજોના આચાર્યશ્રીઓ.

ર) અધ્યક્ષશ્રી, વિજ્ઞાન વિદ્યાશાખા

3) પરીક્ષા નિયામકશ્રી, પરીક્ષા વિભાગ, વીર નર્મદ દ. ગુ. યુનિવર્સિટી, સુરત.

...તરફ જાણ તેમજ ઘટતી કાર્યવાહી સારૂ.

2019-2-15 14:18

Veer Narmad South Gujarat University, Surat

M.Sc. (Microbiology) Syllabus

(Effective from June, 2017 to April 2020)

VEER NARMAD SOUTH GUJARAT UNIVERSITY, SURAT M.Sc. MICROBIOLOGY

Teaching & Evaluation Scheme

Semester – I

Paper No.	Paper Title	Theory	Practical	External	Internal	Total	Credit
		(Hrs	s/Wk)				
MB-101	Taxonomy, Virology & Cytology	4	-	70	30	100	4
MB-102	Molecular Biology & rDNA Technology	4	-	70	30	100	4
MB-103	Bioanalytical techniques and Instrumentation	4	-	70	30	100	4
MB-104	Advances In Environmental Microbiology	4	-	70	30	100	4
Practicals		-	16	140	60	200	8
	Total	16	16	420	180	600	24

Semester – II

Paper No.	Paper Title	Theory	Practical	External	Internal	Total	Credit
		(Hrs	s/Wk)				
MB-201	Microbial Physiology	4	-	70	30	100	4
MB-202	Bioinformatics & Other "OMICS"	4	-	70	30	100	4
MB-203	Enzyme Kinetics & Technology	4	-	70	30	100	4
MB-204	Research methodology,	4	-	70	30	100	4
	Biostatistics and IPR						
Practicals		-	16	140	60	200	8
Total		16	16	420	180	600	24

Semester – III

Paper No.	Paper Title	Theory	Practical	External	Internal	Total	Credit
		(Hrs	s/Wk)				
MB-301	Fermentation Technology &	4	-	70	30	100	4
	Bioprocess Engineering						
MB-302	Industrial Microbiology	4	-	70	30	100	4
MB-303	Molecular Pathogenesis and	4	-	70	30	100	4
	Immunology						
MB-304	Advances in Pharmaceutical	4	-	70	30	100	4
	Microbiology						
Practicals		-	16	140	60	200	8
	Total	16	16	420	180	600	24

Semester – IV

Paper No.	Paper Title	Theory	Practical	External	Internal	Total	Credit
		(Hrs	s/Wk)				
MB-401	Seminar Presentation	6	-	70	30	100	4
MB-402	Report on Industrial / Conference /	4	-	-	50	50	4
	Symposium visit						
MB-403	Review Article	6	-	ı	100	100	4
MB-404	PROJECT/DISSERTATION	-	16	250	100	350	12
Total 16 16 320 280 600					24		
Total credit of the course						96	

M.Sc. Semester - I

MB 101: TAXONOMY, VIROLOGY AND CYTOLOGY

OBJECTIVE: The main aspects of this paper includes Taxonomy and Classification of Bacteria & Virus, Fundamentals of Virology along with concepts of new emergent virus, it also includes molecular aspects of phage and different organelle studies.

Unit-1	Taxonomy and classification of bacteria and virus				
	Ref: Bergey's manual, 2	Teaching Duration:	Lectures: 9		
	edition,vol 1				
1.1	Taxonomy and classification of bacteria				
1.2	Procaryotic domains				
1.3	Classification of Procaryotic organisms and the concept of bacterial species				
1.4	Identification of procaryotes				
1.5	Polyphasic Taxonomy				
1.6	Bacterial nomenclature				
1.7	Culture Collections				
1.8	Virus taxonomy (Ref. Fields)				
1.9	The Baltimore scheme of virus classification (Ref. Wagner)				
1.10	Banking diverse data in ICTV	⁷ dB	(Ref. Murray)		

Unit-2	Fundamentals of virology				
	Ref: Shors	Teaching Duration:	Lectures: 7		
2.1	Virus properties, structure and morphology				
2.2	Viruses that challenge the def	Viruses that challenge the definition of a virus			
2.3	One step growth curve				
2.4	Key steps of virus replication	cycles			
2.5	New Viruses and Viruses that are reemerging				
2.6	Prions and viroids				

Unit-3	Bacteriophages					
	Ref: Fields	Teaching Duration:	Lectures: 8			
3.1	Virulent Phages					
	3.1.1 Phage T4					
	3.1.2 Ø x174					
	3.1.3 MS2					
3.2	Temperate phages					
	3.2.1 Phage λ .					
	3.2.2 Phage Mu-1 as a Model Transposon.					
	3.2.3 Phage P 1 as a Model plasmid					
3.3	Evolution and natural biolog					
3.4	Bacteriophage creates pathog	•	(Shors)			

Unit-4		Cytology	
	Ref: Campbell and Reece	Teaching Duration:	Lectures: 8
4.1	Eucaryotic cell structure		
4.2	The Nucleus		
4.3	Ribosomes		
4.4	Endoplasmic reticulum		
4.5	Golgi apparatus		
4.6	Lysosomes		
4.7	Vacuoles		
4.8	Mitochondria		
4.9	Chloroplast		
4.10	Peroxisomes		
4.11	Cytoskeleton		
4.12	Cell wall		
4.13	Extracellular matrix and inter	cellular junctions	

REFERENCES:

- 1. Bergey's manual of systematic bacteriology, 2nd Edition, Vol.1, Springer, ISBN:0-387-98771-1
- 2. Murray, Barron, Jorgenson, Pfaller, Yolken. *Manual of clinical microbiology*, 8th Edition, Vol. 2, ASM Press: ISBN: 1-55581-255-4.
- 3. Wagner, Hewlett, Bloom & Camerini, (2008). *Basic virology*, 3rd Edition, Blackwell publishers, ISBN-13:978-1-4051-4715-6.
- 4. Alan. J. Cann, (2005). *Principles of molecular virology*, 4th Edition. Elservier academic press, ISBN: 0-12-088787-8.
- 5. David. M. Knipe, Peter M. Howley, (2007). *Fields virology*, 5th Edition Vol. 1, LWW, ISBN-13: 978-0-7817-6060-7.
- 6. Geoffrey M. Cooper, Robert E. Hausman, (2007). *The cell*, 4th edition, ASM press, ISBN-13:978-0-87893-220-7.
- 7. Moselio Schaechter, (2004). *Desk encyclopedia of microbiology*, Elsevier Academic Press, ISBN 0-12-621361-5.
- 8. Shors, T., (2013). *Understanding viruses*, 2nd edition, Jones and Bartlett, ISBN: 978-1-4496-4892-3.
- 9. Campbell, J. et al., (2015). *Biology: A Global Approach*, 10th edition, Pearson Education Pvt. Ltd.

MB 102: MOLECULAR BIOLOGY & rDNA technology

OBJECTIVE: The paper intends to deal basic reactions of molecular biology at its most advanced level.

Unit-1	GENOME ORGANIZATION, REPLICATION					
	Ref: Watson	Teaching Duration:	Lectures: 8			
1.1	The Structures of DNA					
1.2	Nucleosome					
1.3	DNA topology					
1.4	The structure of RNA					
1.5	The replicon		(Ref.Lewin)			
1.6	DNA replication					

Unit-2	GENE EXPRESSION				
	Ref: Watson and Baker	Teaching Duration:	Lectures: 8		
2.1	Transcription				
	2.1.1 RNA Polymerase				
	2.1.2 Features of Prokaryotic	promoters			
	2.1.3 Assembly synthesis and	processing of prokaryotic tr	anscripts		
	2.1.4 Regulation of transcript	ion in prokaryotes			
2.2	Translation				
	2.2.1 Structure and role of tR	NA			
	2.2.2 Ribosome structure				
	2.2.3 Genetic code				
	2.2.4 Translation in prokaryo	tes			
2.3	DNA topology				
2.4	The structure of RNA				
2.5	The replicon		(Ref.Lewin)		
2.6	DNA replication				

Unit-3	TOOLS OF RECOMBINANT DNA TECHNOLOGY				
	Ref: Watson and Baker	on and Baker Teaching Duration: Lecture			
3.1	Enzymes and vectors				
	3.1.1 Restriction enzymes				
	3.1.2 DNA ligase				
	3.1.3 Vectors: plasmids, bacteriophage, M13 based vectors, phagemids,				
	cosmids, YAC, BAC, HAC/	MAC			
	, , , , , , , , , , , , , , , , , , , ,				
3.2	Polymerase Chain Reaction		(Murray)		
3.3	Genomic and chromosome lib	oraries	(Russel)		

Unit-4	APPLICATIONS OF RECOMBINANT DNA TECHNOLOGY				
	Ref: Primrose	Lectures: 8			
4.1	DNA E		(TT)		
4.1	DNA Fingerprinting & DNA	Forensics	(Watson)		
4.2	Gene Therapy				
	4.2.1 Human Gene Therapy		(Glick)		
	4.2.2 DNA Vaccines				
	4.2.3 Gene Augmentation				
	4.2.4 Gene therapy for Cance	er Cells			
4.3	Recombinant products: horm	ones and vaccines	(Rastogi)		
4.4	Regulation of gene action by	RNAi	(Watson)		
4.5	Transgenesis in plants				
	4.5.1 Gene transfer to plants				
	4.5.2 Plants as bioreactor				
4.6	Transgenesis animals		(Glick)		
	4.6.1 Retroviral vector metho	od			
	4.6.2 Cre- <i>lox P</i> recombination	n system			
		•			

REFERENCES:

- 1. Lewin, B., (2004). Genes VIII. Pearson.
- 2. Watson, J. D. et al (2008). Molecular Biology of the Gene. 5th Edition, Pearson
- 3. Murray, Barron, Jorgenson, Pfaller, Yolken. *Manual of clinical microbiology*, 8th Edition, Vol. 2, ASM Press, ISBN: 1-55581-255-4.
- 4. Primrose, S. and Twyman, R. (2006). *Principles of gene manipulation & genomics*, 7th edition. Black well publishing, Malden.
- 5. Glick, B. R., Pasternak, J. J. and Patten C. L., (2010), *Molecular Biotechnology: Principles and Applications Recombinant DNA*, 4th edition, ASM Press.
- 6. Rastogi, S. and Pathak, N. (2009), Genetic Engineering, Oxford Uni. Press.

MB 103: BIOANALYTICAL TECHNIQUES AND INSTRUMENTATION

OBJECTIVE: The objective of the course is to introduce the students to the concepts of physical principles of detection and measurement systems. Emphasis will also be given to understand the principles of major experimental techniques applied to understand these physical problems. The course will cover theoretical aspects and applications of modern analytical techniques in Modern Biology.

Unit-1	Molecular techniques		
	Ref: Murray	Teaching Duration:	Lectures: 7
1.1	Non amplified nucleic acid pr	robes	
1.2	Amplified nucleic acid technique		
1.3	Target Amplification technique		
1.4	Probe Amplification technique		
1.5	Post amplification detection a	nd Analysis	
1.6	Current Application	•	
1.7	RFLP, RAPD, VNTR, STR a	nd SNP analysis	

Unit-2	Chromatographic techniques		
	Ref: Wilson	Teaching Duration:	Lectures: 8
2.1	Principle and classification of	Cchromatography	
	2.1.1 Partition chromatograph	ny	
	2.1.2 Adsorption chromatography		
	2.1.3 Thin layer chromatography		
	2.1.4 Gel permeation chromatography		
	2.1.5 Ion exchange chromatography		
	2.1.6 Affinity chromatography		
	2.1.7 High-Performance Liquid chromatography		
	2.1.8 Gas chromatography		
	2.1.8.1 GC-MS		
	2.1.8.2 LC-MS		

Unit-3	Spectroscopic and X-ray diffraction techniques		
	Ref: Khandpur	Teaching Duration:	Lectures: 9
3.1	Principles, Instrumentation ar	nd applications in biological s	sciences
	3.1.1 UV-VIS spectroscopy		
	3.1.2 Infrared spectroscopy		
	3.1.3 Nuclear Magnetic Resonance spectroscopy.		
	3.1.4 Mass spectrometer		
	3.1.4.1 Basic mass spectrometer		
	3.1.4.2 Principle of operation		
	3.1.4.3 Types of mass spectrometers		

	3.1.4.4 Components of a mass spectrometer
	3.1.4.5 Application of mass spectrometry
3.2	X-ray Diffraction
	3.2.1 Principle & applications of Debey scharrer camera

Unit-4	Electrophoretic techniques			
	Ref: Walker	Teaching Duration:	Lectures: 8	
4.1	General principles			
4.2	Support media	Support media		
4.3	Electrophoresis of proteins			
4.4	Electrophoresis of nucleic acids			
4.5	Capillary electrophoresis			
4.6	Microchip electrophoresis			

Reference:

- 1. Wilson, K. and Walker, J., (2010). *Principles and Techniques of Biochemistry and Molecular Biology*, 7th edition, Cambrige University Press (Low price edition), New York.
- 2. Khandpur, R. S., (2008). *Handbook of analytical instruments*. 2nd edition, Tata McGraw-Hill Publishing Company Limited (New Delhi).
- 3. Webster J. G., (2009). *Bioinstrumentation*, Student edition, Wiley India (P) Ltd. New Delhi.
- 4. Upadhyay, A., Upadhyay, K and Nath, N., (2003). *Biophysical Chemistry (Principles and Techniques)*, 8th edition, Himalaya Publishing House.
- 5. Khopkar, S. M., (2008). *Basic concepts of Analytical Chemistry*, 3rd edition, New age international publishers (New Delhi.
- 6. Sharma, B. K., (2005). *Instrumental methods of chemical analysis*, 24th edition, GOEL publishing house, Meerut.
- 7. Murray, Barron, Jorgenson, Pfaller, Yolken. *Manual of clinical microbiology*, 8th Edition, Vol. 2, ASM Press, ISBN: 1-55581-255-4.

MB 104: ADVANCES IN ENVIRONMENTAL MICROBIOLOGY

OBJECTIVE: The paper focuses on several aspects of waste water engineering and also on the application of microbes to solve several environmental problems. The paper also makes the students familiar with current research in making the environment safe and healthy. It also exploits the principles of environmental microbiology and applies this understanding for economic purpose.

Unit-1	Characteristics of waste water			
	Ref: Metcalf & Eddy	Teaching Duration:	Lectures: 8	
1.1	Waste water constituents.	Waste water constituents.		
1.2	Sampling and analytical process	Sampling and analytical procedures		
1.3	Physical characteristics			
1.4	Inorganic non-metallic constituents.			
1.5	Metallic constituents.			
1.6	Aggregate organic constituents.			
1.7	Microbial growth kinetics			

Unit-2	Bioremediation		
	Ref: Doble & Anilkumar	Teaching Duration:	Lectures: 8
2.1	Bioremediation technologies		
2.2	Biotreatment of waste		
	2.2.1 Textile effluent		
	2.2.2 Food and Dairy industry		
	2.2.3 Sugar and Distillery waste		
	2.2.4 Pharmaceuticals		
	2.2.5 Hospital waste		
	2.2.6 Waste from nuclear pla	nts	
2.3	Biodesulfurization		

Unit-3	Biodegradation			
	Ref: M. Alexander Teaching Duration: Lectures: 8			
3.1	Fundamentals of Biodegradat	ion		
	3.1.1 Growth linked biodegradation			
	3.1.2 Acclimation			
	3.1.3 Detoxication			
	3.1.4 Activation			
	3.1.5 Bioavailability			
	3.1.6 Cometabolism			
	3.1.7 Inoculation			
3.2	Biodegradation of pesticides	(Doble&Anilkumar)	

3.3	Biodegradation of polymers	(Doble&Anilkumar)
3.4	Biodegradation of dyes	(Doble&Anilkumar)

Unit-4	Microbial ecology and Environmental Biotechnology		
	Ref:	Teaching Duration:	Lectures: 8
4.1	Microbial ecology – New Dir	ections, new importance (BM	ISB Ed. 2 Vol 1)
4.2	Nucleic acid probes and their application in environmental microbiology		
	(BMSB Ed. 2 Vol 1)		
4.3	Metagenomic libraries from uncultured microorganisms ((Osborn)
4.4	Microbial transformation of heavy metals		(Mohapatra)
4.5	Microbial transformations of Pesticides		(Mohapatra)
4.6	Bioprospecting		(Sumit Ray)
4.7	Investigative Biodeterioration	ı	(Allsopp)
4.8	The control of Biodeterioration	on	(Allsopp)

References:

- 1. Hawksworth, D. L., (1995). *Biodiversity: Measurement and Estimation*, 1st edition, Chapman & Hall The royal society.
- 2. Garrity, G. M. and Boone, D. R., (2001). *Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria*; 2nd edition, Springer.
- 3. Metcalf & Eddy Inc., (2002). *WastewaterEngineering: Treatment and Reuse*, 4th edition, McGraw Hill Higher Education.
- 4. Doble, M. & Anil kumar., (2005). *Biotreatment of Industrial Effluents*. Butterworth-Heinemann An imprint of Elsevier.
- 5. Alexander, M., (1999). Biodegradation and Bioremediation, 2nd edition, Academic Press.
- 6. Osborn, A.& Smith, C., (2005). *Molecular Microbial Ecology (Advanced methods)*, 1st edition. BIOS Scientific Publisher, Taylor & Francis group.
- 7. Hurst, C., (2007). Manual of Environmental Microbiology, 3edition, ASM Press.
- 8. Allsopp, D. *et al.*, (2004). *Introduction to Biodeterioration*, 2nd edition, Cambridge University Press.
- 9. Mohapatra P. K., (2010). *Environment Biotechnology*, I K International.
- 10. Ray S & Ray A K (2010) Biodiversity & Biotechnology, New Central Book Agency, London (ISBN: 81-7381-505-4)

LIST OF PRACTICALS SEMESTER 1

- 1. One-step growth curve.
- 2. Digesting DNA with Restriction Endonuclease.
- 3. Ligation of DNA fragments.
- 4. Amplification of gene by PCR.
- 5. To study RFLP.
- 6. Extraction of total RNA from Yeast
- 7. DNA isolation from filamentous fungi.
- 8. Demonstration HPLC and GC
- 9. Thin layer chromatography of sugars, amino acids.
- 10. Extraction of plasmid DNA from bacterial cell
- 11. Proteins quantification by SDS-PAGE.
- 12. Analysis of domestic water and waste water

12.1Physical

- Acidity
- Alkalinity
- Hardness –EDTA titrimetric method
- Chlorine demand
- Solids : TDS and TSS
- 12.2 Inorganic non-metallic constituents
 - Chloride
- 12.3Aggregate organic constituents
 - Biological oxygen demand
 - Chemical oxygen demand
